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INTEGRALS OF MOTION OF AN INCOMPRESSIBLE FLUID

OCCUPYING THE ENTIRE SPACE

UDC 532.5V. V. Pukhnachev

This paper studies integral relations to which the solutions of the Navier–Stokes equations or Euler
equations satisfy in the case of fluids filling the entire three-dimensional space. The existence of
these relations is due to a rapid decrease of the velocity field at infinity (but not too rapid in order
that the required asymptotic forms are reproduced with time). Of special interest are the integrals of
motion whose density depends quadratically on the velocities or their derivative with respect to the
coordinates. Such integrals (conservation laws) for the Navier–Stokes equations were recently found
by Dobrokhotov and Shafarevich. In the present paper, new conservation laws are obtained, which are
quadratic in the derivatives of the velocity and lead to identities that link the averaged and pulsation
characteristics of free turbulent flows.
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We assume that a viscous incompressible fluid occupies the entire space R3 and external volume forces do
not act on it. The fluid velocity v(x, t) = (v1, v2, v3) and the fluid pressure p(x, t) are linked by the Navier–Stokes
equations

vt + v · ∇v = −∇p+ ν∆v, ∇ · v = 0, x ∈ R3, 0 < t < T, (1)

where ν > 0 is the kinematic viscosity. The fluid density is set equal to unity without loss of generality. The fluid
begins to move from a specified initial state:

v = v0(x), x ∈ R3, t = 0. (2)

It is assumed that the function v0 satisfies the continuity equation ∇ · v0 = 0 and some conditions of smoothness
and decrease at infinity, which will be given below. For ν = 0, system (1) becomes the Euler equations

vt + v · ∇v = −∇p, ∇ · v = 0, (3)

which describe the motion of an ideal incompressible fluid.
The resolvability of the Cauchy problem (1), (2) has been the subject of extensive research (see [1–3] and

references therein) and is not considered here. We only recall that for the two-dimensional analog of the problem (1),
(2), the existence and uniqueness theorem holds globally, i.e., for all T > 0 irrespective of the magnitude of
the norm of the function v0 in the appropriate Banach space. For the three-dimensional problem, the global
unique resolvability was proved under the additional assumption of axisymmetric motion [4], which implies that in
cylindrical coordinates (r, θ, z), the velocity components vr and vz and the pressure p do not depend on θ and that
vθ = 0. Generally, the existence of a single solution of problem (1), (2) in a small time interval [0, T ] was proved for
arbitrary initial data from a certain class (for example, v0 ∈ L2(R3) for any T > 0 if the norm of the initial data is
small.
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Below, we assume that v0 → 0 as x → ∞. The order of decrease in v0 determines many qualitative
properties of the solution of problem (1), (2), in particular, the presence or absence of time-independent functionals
of its solution. The simplest of them is the momentum integral∫

v dx =
∫

v0 dx, t ∈ [0, T ], (4)

which is valid for any classical solution of the problem (1), (2) that satisfies the condition

|v(x, t)| 6 C(1 + |x|)−γ , x ∈ R3, t ∈ [0, T ] (5)

with certain constants γ > 3 and C > 0 [the absence of the limits of integration in (4) and in the next relations
implies that the integral is taken over the entire space].

The law of conservation of momentum (4) is equally valid for the motion of viscous and ideal fluids. However,
the condition γ > 3 is very stringent and is not satisfied even for a simple solution of system (3) such as Hill’s
spherical vortex [5]. In cylindrical coordinates, in which the fluid is at rest at infinity, this solution has the form

vr = − 3Ua3r(z + Ut)
2[r2 + (z + Ut)2]5/2

, vz = −Ua
3[r2 − 2(z + Ut)2]

2[r2 + (z + Ut)2]5/2

for r2 + (z + Ut)2 > a2, vθ = 0 everywhere, (6)

vr = −3Ua−2r(z + Ut)/2, vz = Ua−2[6r2 + 3(z + Ut)2 − 5a2]/2

for r2 + (z + Ut)2 6 a2,

where a > 0 and U are constants. In this case, the exponent γ = 3 in (5) and the integral (4) converges only in the
sense of the principal value rather than absolutely. Since

lim
∫
Br

v dx = lim
∫
Br

v0 dx at R→∞ (7)

(Br is a sphere |x| < R), expression (4) can be regarded as the time-independent fluid momentum P .
A remarkable feature of the Hill solution is the localization of the vorticity: ω ≡ rotv = 0 outside the sphere

r2 +(z+Ut)2 = a2. In such situations, the limits of expressions (7) for R→∞ can be calculated by the formula [5]

P =
1
2

∫
x× ω dx. (8)

The definition of the fluid momentum (8) can also be fruitful for studies of the motion of a viscous fluid occupying
the entire space if the vorticity in this motion is assumed to decrease rapidly as x →∞ [6]. This situation takes place
in the problem of the diffusion of Hill’s spherical vortex with vanishing viscosity [7]. The problem is formulated
as follows: it is required to find a solution of system (1) with the initial condition (2), where the vector v0 is
determined by formulas (6) for t = 0. In this case, the function v0 is continuous but the vortex ω0 = rotv0 has a
first-order discontinuity on the sphere r2 + z2 = a2. The presence of viscosity leads to instantaneous smoothing of
the discontinuity, so that the solution of the problem (1), (2) becomes infinitely differentiable for t > 0. If ν → 0,
this process is described by boundary-layer type functions. An unsteady boundary layer is concentrated near the
moving sphere r2 + (z + Ut)2 = a2, and its thickness has order (νt)1/2. Batishchev and Srubshchik [7] constructed
the asymptotic form of the solution of the examined problem for ν → 0, which is valid in any finite time interval.
This was done using the algorithm proposed in [8] to construct the asymptotic form of the solution of the problem
of a planar fluid flow with initially localized vorticity for ν → 0. In [8], this algorithm was used to solve the problem
of the effect of small viscosity on fluid flow in which the initial constant vorticity is concentrated inside an ellipse.
In this case, the solution of the Cauchy problem for the two-dimensional Euler equations (3) describes motion in
which the vortex region remains an ellipse that rotates at constant angular velocity around its center (so-called
Kirchhoff’s elliptic vortex [5]). In [7, 8], an estimate is given of the closeness of the exact and approximate solutions
of the problem of the diffusion of Hill’s spherical vortex and Kirchhoff’s elliptic vortex at ν → 0 in any finite time
interval [0, T ]. We note that in both cases, the vorticity decreases exponentially when x →∞ and t ∈ [0, T ]. This
guarantees that the momentum integral (8) and its planar analog converge and do not vary in time. If the vector v

satisfies inequality (5) with γ > 4, the total moment of momentum of the fluid M =
∫

x× v dx in the solution of
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the problem (1), (2) is conserved. However, the indicated condition is too stringent: assuming that it is satisfied
for t > 0, we cannot, generally speaking, guarantee the reproducibility of the asymptotic form (5) with γ > 4 for
t > 0. The exponent γ = 4 is critical [3]. If inequality (5) is satisfied for γ = 4 and if the initial vorticity is finite or

decreases rapidly as x → ∞, then in the solution of the problem (1), (2) the quantity M =
1
2

∫
x × (x ×w) dx,

having the meaning of the resultant moment of momentum [5], is conserved.
The integrals of motion (4), (8) are linear in the velocities or their derivatives. It is of interest to find quadratic

functionals conserved on the solutions of the Cauchy problem (1), (2). For an ideal fluid, such a functional is the
energy integral ∫

|v|2 dx =
∫
|v0|2 dx, t ∈ [0, T ] (9)

[it is assumed that both integrals in (9) converge]. In a viscous fluid, the kinetic energy dissipates, and equality (9)
becomes an inequality, which is strict if v0 6= 0 for any t ∈ (0, T ]. It is unexpected that for a rather wide class of

motions of a viscous fluid, each of the kinetic energy components
∫
v2

k dx (k = 1, 2, 3) decreases with time at the

same rate. In [9], it was established that provided that v decreases rapidly as x →∞, the following identities hold:∫
v2

i dx =
∫
v2

k dx,

∫
vivk dx = 0 (i, k = 1, 2, 3; i 6= k). (10)

From the results of [9], it also follows that if in the solution of problem (1), (2) the functions v, ∇v, and vt decrease
faster than |x|−4 as x → ∞, identities (10) necessarily hold at the initial time. This result can be treated as an
instantaneous loss of the localization property of the velocity field in the solution of the Cauchy problem (1), (2).
In [10], a similar result was obtained without any assumptions on the smoothness of the solution of the problem
considered.

We give a simple derivation of identities (10) for the case of planar motion. We designate x1 = x, x2 = y,
v1 = u, and v2 = v and define the stream function ψ by the relations u = ψy and v = −ψx. Then, as noted by
Aristov, the momentum equation in the projection onto the x axis becomes

∂

∂x
(p+ ψ2

y) =
∂

∂y
(ν∆ψ − ψt + ψxψy),

whence follows the existence of the function Q such that p+ ψ2
y = Qy and ν∆ψ − ψt + ψxψy = Qx. From Eqs. (1)

and the definition of Q, it follows that this function satisfies the Poisson equation ∆Q = 2ψy∆ψ. Multiplying both
sides of the last equation by the linear function L of the variables x and y, integrating the resulting equality over
the circle Dr = {x, y: x2 + y2 < R2}, and performing simple manipulations, we obtain∫

SR

(
L
∂Q

∂R
−Q

∂L

∂R

)
Rdϕ =

∫
DR

[Ly(ψ2
x − ψ2

y)− 2Lxψxψy] dx dy

+
∫

SR

L[(ψ2
y − ψ2

x) sinϕ+ ψxψy cosϕ]Rdϕ,

where SR is the circle x2 + y2 = R2 and ϕ = arctan (y/x). Assuming that the functions Q, ∇Q, and ∇ψ decrease
rapidly with increase in R, we can pass to the limit R→∞ in the equality obtained. The limiting relation has the
form ∫

[Ly(ψ2
x − ψ2

y)− 2Lxψxψy] dx dy = 0,

where the integral is taken over the entire plane (x, y). Setting L = x± y, we finally we obtain∫
(u2 − v2) dx dy =

∫
uv dx dy = 0,

which is the analog of identities (10) in the planar case.
Identities (10) have the meaning of integrals of motion for a viscous fluid occupying the entire space. However,

they have a conditional nature because the existence of solutions of problem (1), (2) that decrease rapidly as x →∞
is not guaranteed even if the initial data have this property. In particular, the condition v = O(|x|−γ) for x →∞,
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generally speaking, is not satisfied for t > 0 if γ > 4. Nevertheless, Brandolese [10] distinguished a class of initial
functions v0 with a small norm for which inequality (5) is satisfied for all T > 0 with the exponent γ ∈ (4, 5]. This
class is defined by the following conditions: v0i is an odd function of xi and an even function of the remaining
variables; v01(x1, x2, x3) = v02(x3, x1, x2) = v03(x2, x3, x1). The higher degree of symmetry of the initial data,
associated with groups of regular polyhedra in R3, makes it possible to increase the critical value of γ but in the
most favorable case, γ does not exceed seven (Brandolese’s hypothesis). At the same time, for large x, the asymptotic
form of a typical velocity field v0 with a finite or rapidly decreasing function ω0 = rot v0 decreases as O(|x|−3) and
its principal term corresponds to a dipole located at the coordinate origin. In this case, there are no grounds to
hope that the integral identities (10) are satisfied. For example, for the initial data corresponding to Hill’s spherical

vortex (6), the value of the integral
∫

(v2
r−2v2

z) dx at small t has the asymptotic form −πU2a3[1+O(
√
νt/a)], which

is in conflict with (10). However, for such motions, too, integrals exist but their densities depend quadratically on
the first and higher derivatives of the velocity components with respect to the space variables.

Our reasoning is based on the well-known relation, which is valid for the smooth solutions of system (1):

∆p = 2Ω : Ω−D : D, x ∈ R3, 0 6 t 6 T, (11)

where D and Ω are the symmetric and antisymmetric parts of the tensor ∇v. We assume that ∂vi/∂xk = O(|x|−α)
for x →∞ and t ∈ [0, T ] (i, k = 1, 2, 3), where α > 2. Then, the following representations hold:

p = b(t)/|x|+O(|x|−2) at x →∞, t ∈ [0, T ], ∇p = b(t)∇(1/|x|) +O(|x|−3), (12)

where

b(t) =
1
4π

∫
(D : D − 2Ω : Ω) dx.

Representations (12) follow from the well-known properties of Newtonian’s potential with rapidly decreasing density.
Let us introduce the function q = p+ x · ∇p. From (12)it follows that q = O(|x|−2) as x →∞. We can also show
that

∇q = O(|x|−3) at x →∞, t ∈ [0, T ]. (13)

We now define the vector function w by the equality w = x · ∇v. It is important that this vector w is solenoidal
(whereas the vector ∇v ·x, generally speaking, does not have this property). Direct calculations show that if a pair
v and p is a solution of Eq. (1), the functions w and s = x · ∇p satisfy the equations

wt + vt + v · ∇w + w · ∇v = −∇s+ ν∆w, ∇ ·w = 0. (14)

We apply the divergence operation to the first of Eqs. (14) and subtract the resulting equality from (11). Taking
into account the equality q = p+ s, we obtain Poisson’s equation for the function q:

∆q = 2Ω : (Ω + Ψ)−D : (D + E), x ∈ R3, (15)

which is valid for all t ∈ [0, T ]. In (15), E and Ψ are the symmetric and antisymmetric parts of the tensor ∇w. We
assume, in addition, that the components of the vector w satisfy the condition ∂wi/∂xk = O(|x|−α) with α > 2 for
x → ∞ and t ∈ [0, T ] (i, k = 1, 2, 3). Integrating equality (15) over the circle |x| < R and passing to the limit at
R→∞, by virtue of (13) we have ∫

[D : (D + E)− 2Ω : (Ω + Ψ)] dx = 0. (16)

Identity (16) is the required integral of motion.
We now consider the solenoidal vector function z = x ·∇w and the associated “pressure” n = x ·∇s. These

functions satisfy the system

zt + wt + vt + v · ∇z + 2w · ∇w + z · ∇v = −∇n+ ν∆z, ∇ · z = 0.

Postulating the estimates ∂zi/∂xk = O(|x|−α) for x → ∞, where α > 2, and using the method described above,
we arrive at the identity ∫

[D : (E +G) + E : E − 2Ω : (Ω + Φ)− 2Ψ : Ψ] dx = 0, (17)
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where G and Φ are the symmetric and antisymmetric parts of the tensor ∇z. The integral relation (17) contains
the third derivatives of the functions vi with respect to the variables xk (i, k = 1, 2, 3). The procedure of obtaining
identities that are similar to (16) and (17) but include the higher-order derivatives of vi can be continued but this
is beyond the scope of the present paper.

In conclusion, we note that relations (10), (16), and (17), which are exact consequences of Navier –Stokes
equations and some hypotheses on the nature of the decrease in the velocity field at infinity can be used to analyze
free turbulence on the basis of Reynolds’s hypotheses. Denoting the averaged and pulsation components of the
functions vi by v̄i and v′i, respectively, and applying the averaging procedure to relations (10), we obtain∫

(v̄2
i + v′2i ) dx =

∫
(v̄2

k + v′2k ) dx,
∫

(v̄iv̄k + v′iv
′
k ) dx = 0 (i, k = 1, 2, 3; i 6= k). (18)

Equalities similar to (18) can be obtained from relations (16) and (17). The equalities can be used to test semiem-
pirical theories of free turbulent flows. A classical example of such motion is a turbulent vortex ring (see [6]).

The author thanks L. Brandolese, T. Miyakawa, and V. V. Shelukhin for fruitful discussions.
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